Strength of End Bulkheads of Superstructures and Deckhouses

S3.1 Scope

The following proposal applies to bulkheads forming the only protection for openings as per Regulation 18 of LLC 1966 and for accommodations. These requirements define minimum scantlings based upon local lateral loads and it may be required that they be increased in individual cases. Scantlings of tiers not specifically mentioned in this proposal are left to the discretion of individual Classification Societies.

This UR does not apply to CSR Bulk Carriers.

S3.2 Design pressure head

\[p = \frac{a}{100} (bf - y)c \]

where

\[p = \text{design pressure in N/mm}^2 \text{ (MPa)} \]

\[a = 2.0 + \frac{L_1}{120} \text{ for lowest tier of unprotected fronts} \]

The lowest tier is normally that tier which is directly situated above the uppermost continuous deck to which the rule depth \(D \) is to be measured. However, where the freeboard is excessive, it may be left to each individual Classification Society to define this tier as an upper tier. It is recommended that 'excessive freeboard' is that which exceeds the minimum tabular freeboard by more than one standard superstructure height.

\[a = 1.0 + \frac{L_1}{120} \text{ for 2nd tier of unprotected fronts} \]

\[a = 0.5 + \frac{L_1}{150} \text{ for 3rd tier of unprotected fronts and} \]

\[\text{for sides and protected fronts} \]

\[a = 0.7 + \frac{L_1}{1000} - 0.8 \frac{x}{L} \text{ for aft ends aft of amidships} \]

\[a = 0.5 + \frac{L_1}{1000} - 0.4 \frac{x}{L} \text{ for aft ends forward of amidships} \]

\(L, L_1 = \text{length of ships in metres, } L_1 \text{ need not be taken greater than 300 m} \)
S3 (cont)

\[b = 1.0 + \left(\frac{x/L - 0.45}{C_b + 0.2} \right)^2 \quad \text{for } x/L \leq 0.45 \]

\[b = 1.0 + 1.5 \left(\frac{x/L - 0.45}{C_b + 0.2} \right)^2 \quad \text{for } x/L > 0.45 \]

\[C_b = \text{block coefficient}, \quad 0.60 < C_b < 0.80 \]
when determining aft ends forward of amidships, \(C_b \) need not be taken less than 0.80

\[x = \text{distance in metres between bulkhead considered and AP} \]
When determining sides of a deckhouse, the deckhouse is to be subdivided into parts of approximately equal length, not exceeding 0.15\(L \) each and \(x \) is to be taken as the distance between AP and the centre of each part considered.

\[f = \frac{L}{10} e^{-L/300} \left(1 - \left(\frac{L}{150} \right)^2 \right) \quad \text{for } L < 150 \text{ m} \]

\[f = \frac{L}{10} e^{-L/300} \quad \text{for } 150 \text{ m} < L < 300 \text{ m} \]

\[f = 11.03 \quad \text{for } L > 300 \text{ m} \]

\[y = \text{vertical distance in metres from summer waterline to midpoint of stiffener span} \]

\[c = \left(0.3 + 0.7 \frac{b'}{B'} \right) \]

\[b' = \text{breadth of deckhouse at the position considered} \]

\[B' = \text{actual maximum breadth of ship on the exposed weather deck at the position considered} \]

For exposed parts of machinery casings \(c \) is not to be taken less than 1.0

The design pressure \(p \) is not to be taken less than the minimum values given in Table 1.

Table 1

<table>
<thead>
<tr>
<th>(L (\text{m}))</th>
<th>(p (\text{N/mm}^2 \text{ or MPa}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lowest tier of unprotected fronts</td>
</tr>
<tr>
<td>(L \leq 50)</td>
<td>0.03</td>
</tr>
<tr>
<td>(50 < L < 250)</td>
<td>0.025 + (10^{-4}L)</td>
</tr>
<tr>
<td>(L \geq 250)</td>
<td>0.05</td>
</tr>
</tbody>
</table>
S3.3 Stiffener modulus

\[W = 350sl^2p \]

where

\(W \) = stiffener modulus (cm³)

\(s \) = spacing of stiffeners (m), measured along the plating

\(l \) = unsupported span (m), which is to be taken as the ‘tween deck height \(l_{\min} = 2.0 \text{ m} \)

\(p \) = pressure in N/mm² (MPa) as defined above.

The section modulus of house side stiffeners need not be greater than that of side frames on the deck situated directly below, taking account of spacing and span.

These requirements assume the webs of lower tier stiffeners to be efficiently welded to the decks.

Scantlings for other types of end connections may be specially considered.

S3.4 Thickness of plating

\[t = 30s\sqrt{p} \]

where

\(t \) = thickness of plating (mm), not less than:

- 5.0 + \(L_s/100 \) for lowest tier
- 4.0 + \(L_s/100 \) for upper tiers, but not less than 5.0 mm

\(s \) and \(p \) are as defined above.

When determining \(p \), \(y \) is to be measured to middle of the plate field.