Storage and use of SCR reductants

1. General

The NOx Technical Code, in 2.2.5 and elsewhere, provides for the use of NOx Reducing Devices of which Selective Catalytic Reduction (SCR) is one option. SCR requires the use of a reductant which may be a urea/water solution or, in exceptional cases, aqueous ammonia or even anhydrous ammonia. These requirements apply to the arrangements for the storage and use of SCR reductants which are typically carried on board in bulk quantities.

2. Reductant using urea based ammonia (e.g. 40%/60% urea/water solution)

2.1 Where urea based ammonia (e.g. AUS 40 – aqueous urea solution specified in ISO 18611-1) is introduced, the storage tank is to be arranged so that any leakage will be contained and prevented from making contact with heated surfaces. All pipes or other tank penetrations are to be provided with manual closing valves attached to the tank. Tank and piping arrangements are to be approved.

2.2 The storage tank may be located within the engine room.

2.3 The storage tank is to be protected from excessively high or low temperatures applicable to the particular concentration of the solution. Depending on the operational area of the ship, this may necessitate the fitting of heating and/or cooling systems. The physical conditions recommended by applicable recognized standards (such as ISO 18611-3) are to be taken into account to ensure that the contents of the aqueous urea tank are maintained to avoid any impairment of the urea solution during storage.

2.4 If a urea storage tank is installed in a closed compartment, the area is to be served by an effective mechanical supply and exhaust ventilation system providing not less than 6 air changes per hour which is independent from the ventilation system of accommodation, service spaces, or control stations. The ventilation system is to be capable of being controlled from outside the compartment and is to be maintained in operation continuously except when the storage tank is empty and has been thoroughly air purged. If the ventilation stops, an audible and visual alarm shall be provided outside the compartment adjacent to each point of entry and inside the compartment, together with a warning notice requiring the use of such ventilation.

Note:

1. This UR is to be uniformly implemented by IACS Societies for the storage tank of SCR reductants:
 i) when an application for installation, i.e. submission date of plans, is made on or after 1 January 2018; or
 ii) which is installed in ships contracted for construction on or after 1 January 2018.

2. The “contracted for construction” date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of “contract for construction”, refer to IACS Procedural Requirement (PR) No. 29.
Alternatively, where a urea storage tank is located within an engine room a separate ventilation system is not required when the general ventilation system for the space is arranged so as to provide an effective movement of air in the vicinity of the storage tank and is to be maintained in operation continuously except when the storage tank is empty and has been thoroughly air purged.

2.5 Each urea storage tank is to be provided with temperature and level monitoring arrangements. High and low level alarms together with high and low temperature alarms are also to be provided.

2.6 Where urea based ammonia solution is stored in integral tanks, the following are to be considered during the design and construction:

• These tanks may be designed and constructed as integral part of the hull, (e.g. double bottom, wing tanks).

• These tanks are to be coated with appropriate anti-corrosion coating and cannot be located adjacent to any fuel oil and fresh water tank.

• These tanks are to be designed and constructed as per the structural requirements applicable to hull and primary support members for a deep tank construction.

• These tanks are to be fitted with but not limited to level gauge, temperature gauge, high temperature alarm, low level alarm, etc.

• These tanks are to be included in the ship’s stability calculation.

2.7 The reductant piping and venting systems are to be independent of other ship service piping and/or systems. Reductant piping systems are not to be located in accommodation, service spaces, or control stations. The vent pipes of the storage tank are to terminate in a safe location on the weather deck and the tank venting system is to be arranged to prevent entrance of water into the urea tank.

2.8 Reductant related piping systems, tanks, and other components which may come into contact with the reductant solution are to be of a suitable grade of non-combustible compatible material established to be suitable for the application.

2.9 For the protection of crew members, the ship is to have on board suitable personnel protective equipment. Eyewash and safety showers are to be provided, the location and number of these eyewash stations and safety showers are to be derived from the detailed installation arrangements.

2.10 Urea storage tanks are to be arranged so that they can be emptied of urea, purged and vented.

3. Reductant using aqueous ammonia (28% or less concentration of ammonia)

Aqueous ammonia is not to be used as a reductant in a SCR except where it can be demonstrated that it is not practicable to use a urea based reductant. Where an application is made to use aqueous ammonia as the reductant then the arrangements for its loading, carriage and use are to be derived from a risk based analysis.
4. **Reductant using anhydrous ammonia (99.5% or greater concentration of ammonia by weight)**

Anhydrous ammonia is not to be used as a reductant in a SCR except where it can be demonstrated that it is not practicable to use a urea based reductant and where the Flag Administration agrees to its use. Where it is not practicable to use a urea reductant then it is also to be demonstrated that it is not practicable to use aqueous ammonia. Where an application is made to use anhydrous ammonia as the reductant then the arrangements for its loading, carriage and use are to be derived from a risk based analysis.